skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Meghan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Distributed acoustic sensing (DAS) offers a cost effective, nonintrusive method for high-resolution near-surface characterization in urban environments where conventional geophysical surveys are limited or nonexistent. However, passive imaging with DAS in urban settings presents challenges such as strong diurnal traffic noise, nonlinear array geometry, and poor fiber coupling to the ground. We repurposed a dark fiber in Melbourne, Australia, into a 25 km DAS array that traces busy arterial roads, tram routes, and orthogonal sections. By employing noise cross correlation and array beamforming, we calculated dispersion curves and successfully inverted for a near-surface shear-wave velocity model down to 100 meters. Stationary seismic sources are maximized by selecting daytime traffic signals, thereby recovering surface waves and reducing interference from acoustic waves from man-made structures in the subsurface. Poorly coupled channels, which are linked to fiber maintenance pits, are identified through cross-correlation amplitudes. The dispersion curve calculation further considers the channel orientation to avoid mixing Rayleigh and Love waves. Using a trans-dimensional Markov chain Monte Carlo sampling approach, we achieved effective model inversion without a prior reference model. The resulting near-surface profile aligns with mapped lithology and reveals previously undocumented lithological variation. 
    more » « less
  2. null (Ed.)
  3. Abstract During February 2023, a total of 32 individual distributed acoustic sensing (DAS) systems acted jointly as a global seismic monitoring network. The aim of this Global DAS Month campaign was to coordinate a diverse network of organizations, instruments, and file formats to gain knowledge and move toward the next generation of earthquake monitoring networks. During this campaign, 156 earthquakes of magnitude 5 or larger were reported by the U.S. Geological Survey and contributors shared data for 60 min after each event’s origin time. Participating systems represent a variety of manufacturers, a range of recording parameters, and varying cable emplacement settings (e.g., shallow burial, borehole, subaqueous, and dark fiber). Monitored cable lengths vary between 152 and 120,129 m, with channel spacing between 1 and 49 m. The data has a total size of 6.8 TB, and are available for free download. Organizing and executing the Global DAS Month has produced a unique dataset for further exploration and highlighted areas of further development for the seismological community to address. 
    more » « less
  4. null (Ed.)
    Abstract Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology data documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon uranium-lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid- to Late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the Late Jurassic to Early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustal reactivation of the Valdez Creek shear zone, the Late Cretaceous plate boundary that initially brought them together. 40Ar/39Ar mica ages reveal independent post-collisional thermal histories of hanging wall and footwall rocks until reactivation localized on the Valdez Creek fault after ca. 32 Ma. Slip on the Valdez Creek fault expanded into a thrust system that progressed southward to the Broxson Gulch fault at the southern margin of the suture zone and eventually into the Wrangellia terrane. Detrital zircon U-Pb age spectra and clast assemblages from fault-bounded Cenozoic gravel deposits indicate that the thrust system was active during the Oligocene and into the Pliocene, likely as a far-field result of ongoing flat-slab subduction and accretion of the Yakutat microplate. The Valdez Creek fault was the primary reactivated structure in the suture zone, likely due to its linkage with the reactivated boundary zone between the Wrangellia composite terrane and North America in the lithospheric mantle. 
    more » « less
  5. Abstract Volcanic arcs consist of many distinct vents that are ultimately fueled by the common melting processes in the subduction zone mantle wedge. Seismic imaging of crustal‐scale magmatic systems can provide insight into how melt is organized in the deep crust and eventually focused beneath distinct vents as it ascends and evolves. Here, we investigate the crustal‐scale structure beneath a section of the Cascades arc spanning four major stratovolcanoes: Mt. Hood, Mt. St. Helens (MSH), Mt. Adams (MA), and Mt. Rainier, based on ambient noise data from 234 seismographs. Simultaneous inversion of Rayleigh and Love wave dispersion constrains the isotropic shear velocity (Vs) and identifies radially anisotropic structures. IsotropicVsshows two sub‐parallel low‐Vszones (∼3.45–3.55 km/s) at ∼15–30 km depth with one connecting Mt. Rainier to MA, and another connecting MSH to Mt. Hood, which are interpreted as deep crustal magma reservoirs containing up to ∼2.5%–6% melt, assuming near‐equilibrium melt geometry. Negative radial anisotropy, from vertical fractures like dikes, is prevalent in this part of the Cascadia, but is interrupted by positive radial anisotropy, from subhorizontal features like sills, extending vertically beneath MA and Mt. Rainier at ∼10–30 km depth and weaker and west‐dipping positive anisotropy beneath MSH. The positive anisotropy regions are adjacent to rather than co‐located with the isotropic low‐Vsanomalies. Ascending melt that stalled and mostly crystallized in sills with possible compositional differences from the country rock may explain the near‐averageVsand positive radial anisotropy adjacent to the active deep crustal magma reservoirs. 
    more » « less
  6. Abstract The style of convective force transmission to plates and strain‐localization within and underneath plate boundaries remain debated. To address some of the related issues, we analyze a range of deformation indicators in southern California from the surface to the asthenosphere. Present‐day surface strain rates can be inferred from geodesy. At seismogenic crustal depths, stress can be inferred from focal mechanisms and splitting of shear waves from local earthquakes via crack‐dependent seismic velocities. At greater depths, constraints on rock fabrics are obtained from receiver function anisotropy,PnandPtomography, surface wave tomography, and splitting ofSKSand other teleseismic core phases. We construct a synthesis of deformation‐related observations focusing on quantitative comparisons of deformation style. We find consistency with roughly N‐S compression and E‐W extension near the surface and in the asthenospheric mantle. However, all lithospheric anisotropy indicators show deviations from this pattern.Pnfast axes and dipping foliations from receiver functions are fault‐parallel with no localization to fault traces and match post‐Farallon block rotations in the Western Transverse Ranges. Local shear wave splitting orientations deviate from the stress orientations inferred from focal mechanisms in significant portions of the area. We interpret these observations as an indication that lithospheric fabric, developed during Farallon subduction and subsequent extension, has not been completely reset by present‐day transform motion and may influence the current deformation behavior. This provides a new perspective on the timescales of deformation memory and lithosphere‐asthenosphere interactions. 
    more » « less